Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 616(7957): 504-509, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046091

RESUMO

Epstein-Barr virus (EBV) is an oncogenic herpesvirus associated with several cancers of lymphocytic and epithelial origin1-3. EBV encodes EBNA1, which binds to a cluster of 20 copies of an 18-base-pair palindromic sequence in the EBV genome4-6. EBNA1 also associates with host chromosomes at non-sequence-specific sites7, thereby enabling viral persistence. Here we show that the sequence-specific DNA-binding domain of EBNA1 binds to a cluster of tandemly repeated copies of an EBV-like, 18-base-pair imperfect palindromic sequence encompassing a region of about 21 kilobases at human chromosome 11q23. In situ visualization of the repetitive EBNA1-binding site reveals aberrant structures on mitotic chromosomes characteristic of inherently fragile DNA. We demonstrate that increasing levels of EBNA1 binding trigger dose-dependent breakage at 11q23, producing a fusogenic centromere-containing fragment and an acentric distal fragment, with both mis-segregated into micronuclei in the next cell cycles. In cells latently infected with EBV, elevating EBNA1 abundance by as little as twofold was sufficient to trigger breakage at 11q23. Examination of whole-genome sequencing of EBV-associated nasopharyngeal carcinomas revealed that structural variants are highly enriched on chromosome 11. Presence of EBV is also shown to be associated with an enrichment of chromosome 11 rearrangements across 2,439 tumours from 38 cancer types. Our results identify a previously unappreciated link between EBV and genomic instability, wherein EBNA1-induced breakage at 11q23 triggers acquisition of structural variations in chromosome 11.


Assuntos
Quebra Cromossômica , DNA , Herpesvirus Humano 4 , Proteínas Virais , Humanos , Sítios de Ligação , DNA/química , DNA/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Quebras de DNA de Cadeia Dupla , Cromossomos Humanos Par 11/química , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 11/metabolismo , Instabilidade Genômica , Mitose
2.
J Infect Dis ; 226(4): 585-594, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-35413121

RESUMO

The development of a vaccine to prevent congenital human cytomegalovirus (HCMV) disease is a public health priority. We tested rhesus CMV (RhCMV) prototypes of HCMV vaccine candidates in a seronegative macaque oral challenge model. Immunogens included a recombinant pentameric complex (PC; gH/gL/pUL128/pUL130/pUL131A), a postfusion gB ectodomain, and a DNA plasmid that encodes pp65-2. Immunization with QS21-adjuvanted PC alone or with the other immunogens elicited neutralizing titers comparable to those elicited by RhCMV infection. Similarly, immunization with all 3 immunogens elicited pp65-specific cytotoxic T-cell responses comparable to those elicited by RhCMV infection. RhCMV readily infected immunized animals and was detected in saliva, blood, and urine after challenge in quantities similar to those in placebo-immunized animals. If HCMV evades vaccine-elicited immunity in humans as RhCMV evaded immunity in macaques, a HCMV vaccine must elicit immunity superior to, or different from, that elicited by the prototype RhCMV vaccine to block horizontal transmission.


Assuntos
Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Citomegalovirus , Humanos , Macaca mulatta , Proteínas do Envelope Viral
3.
J Virol ; 96(3): e0165321, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34788083

RESUMO

Rhesus cytomegalovirus (RhCMV) infection of rhesus macaques (Macaca mulatta) is a valuable nonhuman primate model of human CMV (HCMV) persistence and pathogenesis. In vivo studies predominantly use tissue culture-adapted variants of RhCMV that contain multiple genetic mutations compared to wild-type (WT) RhCMV. In many studies, animals have been inoculated by nonnatural routes (e.g., subcutaneous, intravenous) that do not recapitulate disease progression via the normative route of mucosal exposure. Accordingly, the natural history of RhCMV would be more accurately reproduced by infecting macaques with strains of RhCMV that reflect the WT genome using natural routes of mucosal transmission. Here, we tested two WT-like RhCMV strains, UCD52 and UCD59, and demonstrated that systemic infection and frequent, high-titer viral shedding in bodily fluids occurred following oral inoculation. RhCMV disseminated to a broad range of tissues, including the central nervous system and reproductive organs. Commonly infected tissues included the thymus, spleen, lymph nodes, kidneys, bladder, and salivary glands. Histological examination revealed prominent nodular hyperplasia in spleens and variable levels of lymphoid lymphofollicular hyperplasia in lymph nodes. One of six inoculated animals had limited viral dissemination and shedding, with commensurately weak antibody responses to RhCMV antigens. These data suggest that long-term RhCMV infection parameters might be restricted by local innate factors and/or de novo host immune responses in a minority of primary infections. Together, we have established an oral RhCMV infection model that mimics natural HCMV infection. The virological and immunological parameters characterized in this study will greatly inform HCMV vaccine designs for human immunization. IMPORTANCE Human cytomegalovirus (HCMV) is globally ubiquitous with high seroprevalence rates in all communities. HCMV infections can occur vertically following mother-to-fetus transmission across the placenta and horizontally following shedding of virus in bodily fluids in HCMV-infected hosts and subsequent exposure of susceptible individuals to virus-laden fluids. Intrauterine HCMV has long been recognized as an infectious threat to fetal growth and development. Since vertical HCMV infections occur following horizontal HCMV transmission to the pregnant mother, the nonhuman primate model of HCMV pathogenesis was used to characterize the virological and immunological parameters of infection following primary mucosal exposures to rhesus cytomegalovirus.


Assuntos
Infecções por Citomegalovirus/veterinária , Citomegalovirus/fisiologia , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Biópsia , DNA Viral , Suscetibilidade a Doenças/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunoglobulina G/imunologia , Imuno-Histoquímica , Macaca mulatta , Doenças dos Macacos/patologia , Doenças dos Macacos/transmissão , Fases de Leitura Aberta , Especificidade de Órgãos , Carga Viral , Viremia , Eliminação de Partículas Virais
4.
Pharmaceutics ; 13(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34684013

RESUMO

In patients with liver or kidney disease, it is especially important to consider the routes of metabolism and elimination of small-molecule pharmaceuticals. Once in the blood, numerous drugs are taken up by the liver for metabolism and/or biliary elimination, or by the kidney for renal elimination. Many common drugs are organic anions. The major liver uptake transporters for organic anion drugs are organic anion transporter polypeptides (OATP1B1 or SLCO1B1; OATP1B3 or SLCO1B3), whereas in the kidney they are organic anion transporters (OAT1 or SLC22A6; OAT3 or SLC22A8). Since these particular OATPs are overwhelmingly found in the liver but not the kidney, and these OATs are overwhelmingly found in the kidney but not liver, it is possible to use chemoinformatics, machine learning (ML) and deep learning to analyze liver OATP-transported drugs versus kidney OAT-transported drugs. Our analysis of >30 quantitative physicochemical properties of OATP- and OAT-interacting drugs revealed eight properties that in combination, indicate a high propensity for interaction with "liver" transporters versus "kidney" ones based on machine learning (e.g., random forest, k-nearest neighbors) and deep-learning classification algorithms. Liver OATPs preferred drugs with greater hydrophobicity, higher complexity, and more ringed structures whereas kidney OATs preferred more polar drugs with more carboxyl groups. The results provide a strong molecular basis for tissue-specific targeting strategies, understanding drug-drug interactions as well as drug-metabolite interactions, and suggest a strategy for how drugs with comparable efficacy might be chosen in chronic liver or kidney disease (CKD) to minimize toxicity.

6.
Nature ; 591(7848): 137-141, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33361815

RESUMO

Focal chromosomal amplification contributes to the initiation of cancer by mediating overexpression of oncogenes1-3, and to the development of cancer therapy resistance by increasing the expression of genes whose action diminishes the efficacy of anti-cancer drugs. Here we used whole-genome sequencing of clonal cell isolates that developed chemotherapeutic resistance to show that chromothripsis is a major driver of circular extrachromosomal DNA (ecDNA) amplification (also known as double minutes) through mechanisms that depend on poly(ADP-ribose) polymerases (PARP) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). Longitudinal analyses revealed that a further increase in drug tolerance is achieved by structural evolution of ecDNAs through additional rounds of chromothripsis. In situ Hi-C sequencing showed that ecDNAs preferentially tether near chromosome ends, where they re-integrate when DNA damage is present. Intrachromosomal amplifications that formed initially under low-level drug selection underwent continuing breakage-fusion-bridge cycles, generating amplicons more than 100 megabases in length that became trapped within interphase bridges and then shattered, thereby producing micronuclei whose encapsulated ecDNAs are substrates for chromothripsis. We identified similar genome rearrangement profiles linked to localized gene amplification in human cancers with acquired drug resistance or oncogene amplifications. We propose that chromothripsis is a primary mechanism that accelerates genomic DNA rearrangement and amplification into ecDNA and enables rapid acquisition of tolerance to altered growth conditions.


Assuntos
Cromotripsia , Evolução Molecular , Amplificação de Genes/genética , Neoplasias/genética , Oncogenes/genética , Dano ao DNA , Reparo do DNA por Junção de Extremidades , DNA Circular/química , DNA Circular/metabolismo , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Proteína Quinase Ativada por DNA , Resistencia a Medicamentos Antineoplásicos , Células HEK293 , Células HeLa , Humanos , Micronúcleos com Defeito Cromossômico , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Seleção Genética , Sequenciamento Completo do Genoma
7.
Genes Dev ; 34(9-10): 650-662, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32217664

RESUMO

Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat lengths by using the enzyme telomerase, although there are some cancer cells that use a telomerase-independent mechanism of telomere extension, termed alternative lengthening of telomeres (ALT). Cells that use ALT are characterized, in part, by the presence of specialized PML nuclear bodies called ALT-associated PML bodies (APBs). APBs localize to and cluster telomeric ends together with telomeric and DNA damage factors, which led to the proposal that these bodies act as a platform on which ALT can occur. However, the necessity of APBs and their function in the ALT pathway has remained unclear. Here, we used CRISPR/Cas9 to delete PML and APB components from ALT-positive cells to cleanly define the function of APBs in ALT. We found that PML is required for the ALT mechanism, and that this necessity stems from APBs' role in localizing the BLM-TOP3A-RMI (BTR) complex to ALT telomere ends. Strikingly, recruitment of the BTR complex to telomeres in a PML-independent manner bypasses the need for PML in the ALT pathway, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , RecQ Helicases/metabolismo , Homeostase do Telômero/fisiologia , Telômero/genética , Telômero/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Transporte Proteico
8.
J Biol Chem ; 295(7): 1829-1842, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31896576

RESUMO

The multispecific organic anion transporters, OAT1 (SLC22A6) and OAT3 (SLC22A8), the main kidney elimination pathways for many common drugs, are often considered to have largely-redundant roles. However, whereas examination of metabolomics data from Oat-knockout mice (Oat1 and Oat3KO) revealed considerable overlap, over a hundred metabolites were increased in the plasma of one or the other of these knockout mice. Many of these relatively unique metabolites are components of distinct biochemical and signaling pathways, including those involving amino acids, lipids, bile acids, and uremic toxins. Cheminformatics, together with a "logical" statistical and machine learning-based approach, identified a number of molecular features distinguishing these unique endogenous substrates. Compared with OAT1, OAT3 tends to interact with more complex substrates possessing more rings and chiral centers. An independent "brute force" approach, analyzing all possible combinations of molecular features, supported the logical approach. Together, the results suggest the potential molecular basis by which OAT1 and OAT3 modulate distinct metabolic and signaling pathways in vivo As suggested by the Remote Sensing and Signaling Theory, the analysis provides a potential mechanism by which "multispecific" kidney proximal tubule transporters exert distinct physiological effects. Furthermore, a strong metabolite-based machine-learning classifier was able to successfully predict unique OAT1 versus OAT3 drugs; this suggests the feasibility of drug design based on knockout metabolomics of drug transporters. The approach can be applied to other SLC and ATP-binding cassette drug transporters to define their nonredundant physiological roles and for analyzing the potential impact of drug-metabolite interactions.


Assuntos
Metabolômica , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Toxinas Biológicas/metabolismo , Trifosfato de Adenosina/genética , Animais , Ácidos e Sais Biliares/metabolismo , Transporte Biológico/genética , Humanos , Inativação Metabólica/genética , Túbulos Renais Proximais/metabolismo , Aprendizado de Máquina , Camundongos , Camundongos Knockout , Proteína 1 Transportadora de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transdução de Sinais
9.
Int J Hematol ; 110(4): 466-473, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31388932

RESUMO

Carfilzomib is an irreversible proteasome inhibitor used for the treatment of relapsed and/or refractory multiple myeloma (RRMM). We evaluated the efficacy and safety of carfilzomib in subgroups of Asian patients in the randomized phase 3 ENDEAVOR and A.R.R.O.W. trials. In ENDEAVOR, patients received carfilzomib twice-weekly (56 mg/m2) plus dexamethasone (Kd; n = 56) or bortezomib plus dexamethasone (Vd; n = 57). In A.R.R.O.W., patients received carfilzomib once-weekly (70 mg/m2, n = 30) or twice-weekly (27 mg/m2, n = 15) plus dexamethasone. Median progression-free survival (PFS) among Asian patients in ENDEAVOR was longer with Kd than with Vd (14.9 versus 8.8 months; HR 0.599); the overall response rate (ORR) was 80.4% versus 70.2%. Median overall survival (Kd versus Vd) was 47.6 versus 38.8 months (HR 0.856). Median PFS among Asian patients in A.R.R.O.W. was longer for once-weekly versus twice-weekly Kd (16.0 versus 8.4 months; HR 0.628); ORR was 76.7% versus 53.3%. Rates of grade ≥ 3 adverse events were 89.1% (Kd) and 89.5% (Vd) in ENDEAVOR, and 76.6% (once-weekly Kd) versus 73.3% (twice-weekly Kd) in A.R.R.O.W. Overall, carfilzomib had a favorable benefit-risk profile across both dosing regimens [once-weekly (Kd 70 mg/m2) and twice-weekly (Kd 56 mg/m2)] in Asian patients with RRMM, which was consistent with the results of both parent studies.Trial registration ClinicalTrials.gov: NCT01568866, NCT02412878.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Povo Asiático , Bortezomib/administração & dosagem , Dexametasona/administração & dosagem , Esquema de Medicação , Humanos , Mieloma Múltiplo/mortalidade , Oligopeptídeos/administração & dosagem , Oligopeptídeos/efeitos adversos , Inibidores de Proteassoma/administração & dosagem , Inibidores de Proteassoma/efeitos adversos , Medição de Risco , Taxa de Sobrevida , Resultado do Tratamento
10.
J Biol Chem ; 292(33): 13867-13878, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28652403

RESUMO

Vascular inflammation and thrombosis require the concerted actions of several different agonists, many of which act on G protein-coupled receptors (GPCRs). GPCR dimerization is a well-established phenomenon that can alter protomer function. In platelets and other cell types, protease-activated receptor-4 (PAR4) has been shown to dimerize with the purinergic receptor P2Y12 to coordinate ß-arrestin-mediated Akt signaling, an important mediator of integrin activation. However, the mechanism by which the PAR4-P2Y12 dimer controls ß-arrestin-dependent Akt signaling is not known. We now report that PAR4 and P2Y12 heterodimer internalization is required for ß-arrestin recruitment to endosomes and Akt signaling. Using bioluminescence resonance energy transfer, immunofluorescence microscopy, and co-immunoprecipitation in cells expressing receptors exogenously and endogenously, we demonstrate that PAR4 and P2Y12 specifically interact and form dimers expressed at the cell surface. We also found that activation of PAR4 but not of P2Y12 drives internalization of the PAR4-P2Y12 heterodimer. Remarkably, activated PAR4 internalization was required for recruitment of ß-arrestin to endocytic vesicles, which was dependent on co-expression of P2Y12. Interestingly, stimulation of the PAR4-P2Y12 heterodimer promotes ß-arrestin and Akt co-localization to intracellular vesicles. Moreover, activated PAR4-P2Y12 internalization is required for sustained Akt activation. Thus, internalization of the PAR4-P2Y12 heterodimer is necessary for ß-arrestin recruitment to endosomes and Akt signaling and lays the foundation for examining whether blockade of PAR4 internalization reduces integrin and platelet activation.


Assuntos
Endocitose , Proteínas Proto-Oncogênicas c-akt/agonistas , Receptores Purinérgicos P2Y12/metabolismo , Receptores de Trombina/agonistas , Transdução de Sinais , beta-Arrestina 2/metabolismo , Substituição de Aminoácidos , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Endossomos/metabolismo , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Multimerização Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor PAR-1/agonistas , Receptor PAR-1/química , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores Purinérgicos P2Y12/química , Receptores Purinérgicos P2Y12/genética , Receptores de Trombina/química , Receptores de Trombina/genética , Receptores de Trombina/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , beta-Arrestina 2/química
11.
Cancer Chemother Pharmacol ; 79(4): 711-723, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28283735

RESUMO

PURPOSE: Pulmonary arterial hypertension (PAH) results from occlusion or vasoconstriction of pulmonary vessels, leading to progressive right ventricular failure. Dasatinib, a BCR-ABL1 tyrosine kinase inhibitor (TKI) approved for the treatment of chronic myelogenous leukemia, has been associated with PAH. In contrast, the BCR-ABL1 TKI imatinib has demonstrated anti-vasoproliferative properties and has been investigated as a potential treatment for PAH. Here we describe studies evaluating the effects of dasatinib and imatinib on cardiovascular and pulmonary functions to understand the reported differential consequences of the two TKIs in a clinical setting. METHODS: The direct effects of dasatinib and imatinib were explored in vivo to investigate possible mechanisms of dasatinib-induced PAH. In addition, effects of dasatinib and imatinib on PAH-related mediators were evaluated in vitro. RESULTS: In rats, both TKIs increased plasma nitric oxide (NO), did not induce PAH-related structural or molecular changes in PA or lungs, and did not alter hemodynamic lung function compared with positive controls. Similarly, in the pulmonary artery endothelial cells and smooth muscle cells co-culture model, imatinib and dasatinib increased NO and decreased endothelin-1 protein and mRNA. CONCLUSIONS: The results of these studies indicated that dasatinib did not induce physiological changes or molecular signatures consistent with PAH when compared to positive controls. Instead, dasatinib induced changes consistent with imatinib. Both dasatinib and imatinib induced biochemical and structural changes consistent with a protective effect for PAH. These data suggest that other factors of unclear etiology contributed to the development of PAH in patients treated with dasatinib.


Assuntos
Antineoplásicos/toxicidade , Dasatinibe/toxicidade , Hipertensão Pulmonar/induzido quimicamente , Mesilato de Imatinib/toxicidade , Inibidores de Proteínas Quinases/toxicidade , Animais , Antineoplásicos/farmacocinética , Dasatinibe/farmacocinética , Endotelina-1/sangue , Expressão Gênica/efeitos dos fármacos , Hemodinâmica/efeitos dos fármacos , Hipertensão Pulmonar/fisiopatologia , Mesilato de Imatinib/farmacocinética , Pulmão/patologia , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Óxido Nítrico/sangue , Inibidores de Proteínas Quinases/farmacocinética , Artéria Pulmonar/efeitos dos fármacos , Circulação Pulmonar/efeitos dos fármacos , RNA Mensageiro/sangue , Ratos , Ratos Sprague-Dawley
12.
Science ; 355(6325): 638-641, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28082411

RESUMO

Telomeres are found at the end of chromosomes and are important for chromosome stability. Here we describe a specific telomere-associated protein: TZAP (telomeric zinc finger-associated protein). TZAP binds preferentially to long telomeres that have a low concentration of shelterin complex, competing with the telomeric-repeat binding factors TRF1 and TRF2. When localized at telomeres, TZAP triggers a process known as telomere trimming, which results in the rapid deletion of telomeric repeats. On the basis of these results, we propose a model for telomere length regulation in mammalian cells: The reduced concentration of the shelterin complex at long telomeres results in TZAP binding and initiation of telomere trimming. Binding of TZAP to long telomeres represents the switch that triggers telomere trimming, setting the upper limit of telomere length.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Técnicas de Inativação de Genes , Humanos , Ligação Proteica , Sequências de Repetição em Tandem , Telômero/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Fatores de Transcrição/genética
13.
J Biol Chem ; 291(35): 18453-64, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402844

RESUMO

Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of ß-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of ß-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Megacariócitos/metabolismo , Receptores de Trombina/metabolismo , beta-Arrestinas/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Motivos de Aminoácidos , Animais , Células HeLa , Humanos , Megacariócitos/citologia , Camundongos , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Trombina/genética , beta-Arrestinas/genética
14.
Phys Biol ; 12(1): 016008, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25574741

RESUMO

Purpose. Circulating melanoma cells (CMCs) constitute a potentially important representation of time-resolved tumor biology in patients. To date, genomic characterization of CMCs has been limited due to the lack of a robust methodology capable of identifying them in a format suitable for downstream characterization. Here, we have developed a methodology to detect intact CMCs that enables phenotypic, morphometric and genomic analysis at the single cell level. Experimental design. Blood samples from 40 metastatic melanoma patients and 10 normal blood donors were prospectively collected. A panel of 7 chondroitin sulfate proteoglycan 4 (CSPG4)-specific monoclonal antibodies (mAbs) was used to immunocytochemically label CMCs. Detection was performed by automated digital fluorescence microscopy and multi-parametric computational analysis. Individual CMCs were captured by micromanipulation for whole genome amplification and copy number variation (CNV) analysis. Results. Based on CSPG4 expression and nuclear size, 1-250 CMCs were detected in 22 (55%) of 40 metastatic melanoma patients (0.5-371.5 CMCs ml(-1)). Morphometric analysis revealed that CMCs have a broad spectrum of morphologies and sizes but exhibit a relatively homogeneous nuclear size that was on average 1.5-fold larger than that of surrounding PBMCs. CNV analysis of single CMCs identified deletions of CDKN2A and PTEN, and amplification(s) of TERT, BRAF, KRAS and MDM2. Furthermore, novel chromosomal amplifications in chr12, 17 and 19 were also found. Conclusions. Our findings show that CSPG4 expressing CMCs can be found in the majority of advanced melanoma patients. High content analysis of this cell population may contribute to the design of effective personalized therapies in patients with melanoma.


Assuntos
Genoma Humano/genética , Melanoma/genética , Melanoma/patologia , Células Neoplásicas Circulantes/patologia , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias
15.
J Infect Dis ; 208(2): 319-29, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23596321

RESUMO

BACKGROUND: We evaluated the immunological responses of African green monkeys immunized with multiple F and G protein-based vaccines and assessed protection against the Memphis 37 strain of respiratory syncytial virus (RSV). METHODS: Monkeys were immunized with F and G proteins adjuvanted with immunostimulatory (CpG) oligodeoxyribonucleotides admixed with either Alhydrogel or ISCOMATRIX adjuvant. Delivery of F and G proteins via replication incompetent recombinant vesicular stomatitis viruses (VSVs) and human adenoviruses was also evaluated. Mucosally or parenterally administered recombinant adenoviruses were used in prime-boost regimens with adjuvanted proteins or recombinant DNA. RESULTS: Animals primed by intranasal delivery of recombinant adenoviruses, and boosted by intramuscular injection of adjuvanted F and G proteins, developed neutralizing antibodies and F/G protein-specific T cells and were protected from RSV infection. Intramuscular injections of Alhydrogel (plus CpG) adjuvanted F and G proteins reduced peak viral loads in the lungs of challenged monkeys. Granulocyte numbers were not significantly elevated, relative to controls, in postchallenge bronchoalveolar lavage samples from vaccinated animals. CONCLUSIONS: This study has validated the use of RSV (Memphis 37) in an African green monkey model of intranasal infection and identified nonreplicating vaccines capable of eliciting protection in this higher species challenge model.


Assuntos
Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vacinas contra Vírus Sincicial Respiratório/farmacologia , Vírus Sinciciais Respiratórios/imunologia , Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antivirais/imunologia , Lavagem Broncoalveolar/métodos , Chlorocebus aethiops , Granulócitos/imunologia , Granulócitos/virologia , Imunização/métodos , Pulmão/imunologia , Pulmão/virologia , Distribuição Aleatória , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/genética , Linfócitos T/imunologia , Linfócitos T/virologia , Vesiculovirus/genética , Vesiculovirus/imunologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/imunologia , Carga Viral/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Replicação Viral/genética , Replicação Viral/imunologia
16.
Front Oncol ; 2: 72, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22826822

RESUMO

Clinical studies have demonstrated that circulating tumor cells (CTCs) are present in the blood of cancer patients with known metastatic disease across the major types of epithelial malignancies. Recent studies have shown that the concentration of CTCs in the blood is prognostic of overall survival in breast, prostate, colorectal, and non-small cell lung cancer. This study characterizes CTCs identified using the high-definition (HD)-CTC assay in an ovarian cancer patient with stage IIIC disease. We characterized the physical properties of 31 HD-CTCs and 50 normal leukocytes from a single blood draw taken just prior to the initial debulking surgery. We utilized a non-interferometric quantitative phase microscopy technique using brightfield imagery to measure cellular dry mass. Next we used a quantitative differential interference contrast microscopy technique to measure cellular volume. These techniques were combined to determine cellular dry mass density. We found that HD-CTCs were more massive than leukocytes: 33.6 ± 3.2 pg (HD-CTC) compared to 18.7 ± 0.6 pg (leukocytes), p < 0.001; had greater volumes: 518.3 ± 24.5 fL (HD-CTC) compared to 230.9 ± 78.5 fL (leukocyte), p < 0.001; and possessed a decreased dry mass density with respect to leukocytes: 0.065 ± 0.006 pg/fL (HD-CTC) compared to 0.085 ± 0.004 pg/fL (leukocyte), p < 0.006. Quantification of HD-CTC dry mass content and volume provide key insights into the fluid dynamics of cancer, and may provide the rationale for strategies to isolate, monitor or target CTCs based on their physical properties. The parameters reported here can also be incorporated into blood cell flow models to better understand metastasis.

17.
J Biol Chem ; 286(46): 39703-14, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21903590

RESUMO

The human microRNA cluster MC-let-7a-1∼let-7d, with three members let-7a-1, let-7f-1, and let-7d, is an important cluster of the let-7 family. These microRNAs play critical roles in regulating development and carcinogenesis. Therefore, precise control of MC-let-7a-1∼let-7d level is critical for cellular functions. In this study, we first showed that the expression of these three members was significantly reduced in human hepatocellular carcinoma HepG2 cells as compared with the immortalized human liver L02 cells. We demonstrated that the MC-let-7a-1∼let-7d cluster was encoded by a single polycistronic transcript driven by a 10-kb upstream promoter, with two MYC-binding sites. Importantly, MYC inhibited MC-let-7a-1∼let-7d promoter activity via binding to the noncanonical E-box 3 downstream of the transcription start sites, whereas it enhanced promoter activity by binding to the canonical E-box 2 upstream of the transcription start sites. We found that although the binding affinity of MYC to E-box 2 was stronger than E-box 3, the binding quantum of MYC to E-box 3 was significantly higher in cancerous HepG2 cells as compared with the noncancerous L02 cells. In addition, forced expression of let-7 could reverse the MYC-mediated cell proliferation. These findings suggested that in L02 cells with a low level of MYC, MYC binds mainly to E-box 2 to enhance MC-let-7a-1∼let-7d expression. However, in HepG2 cells with an elevated MYC, the extra MYC could bind to E-box 3 to suppress the transcription of MC-let-7a-1∼let-7d and thus enable HepG2 cells to maintain a high level of MYC and a low level of let-7 microRNAs simultaneously.


Assuntos
MicroRNAs/biossíntese , Família Multigênica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Elementos de Resposta , Transcrição Gênica , Células HEK293 , Células Hep G2 , Humanos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA